Lí thuyết tích phânTổng hợp lí thuyết Tích phân đầy đủ, ngắn gọn dễ hiểu. GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
1. Khái niệm và tính chất a. Định nghĩa Cho hàm số \(f(x)\) liên tục trên đoạn \([a;b]\). Giả sử \(F(x) \) là một nguyên hàm của hàm số \(f(x)\) trên đoạn \([a;b]\), hiệu số \(F(b) - F(a)\) được gọi là tích phân từ \(a\) đến \(b\) (hay tích phân xác định trên đoạn \([a;b]\) của hàm số \(f(x)\). Kí hiệu là : \(\int_a^b f (x)dx\) Vậy ta có :\(\int_a^b f (x)dx = F(b) - F(a) = F(x)|_a^b\) Chú ý : Trong trường hợp a = b, ta định nghĩa: \(\int_a^a f (x)dx = 0\) Trường hợp a>b, ta định nghĩa: \(\int_a^b f (x)dx = - \int_b^a f (x)dx\) Tích phân không phụ thuộc vào chữ dùng làm biến số trong dấu tích phân, tức là : \(\int_a^b f (x)dx = \int_a^b f (t)dt = \int_a^b f (u)du = ...\) (vì đều bằng \(F(b) - F(a)\)) b. Tính chất của tích phân \(\int_a^b k f(x)dx = k\int_a^b f (x)dx\) ( với \(k\) là hằng số) \(\int_a^b {\left[ {f\left( x \right) \pm g\left( x \right)} \right]} d{\rm{x}} = \int_a^b {f\left( x \right)} d{\rm{x}} \pm \int_a^b {g\left( x \right)} d{\rm{x}}\) \(\int_a^b f (x)dx = \int_a^c f (x))dx + \int_c^b f (x)dx\) (với \(a<b<c\)) 2. Phương pháp tinh tích phân a. Phương pháp đổi biến số Định lí. Cho hàm số \(f(x)\) liên tục trên \([a;b]\). Giả sử hàm số \(x = \varphi \left( t \right)\) có đạo hàm liên tục trên đoạn \([α;β]\) sao cho \(\varphi \left( \alpha \right) = a,\varphi \left( \beta \right) = b\) và \(a \le \varphi \left( t \right) \le b,\forall t \in \left[ {\alpha ;\beta } \right]\). Khi đó: \(\int_a^b f (x)dx = \int_\alpha ^\beta f (\varphi \left( t \right)) \varphi '(t)dt\) Chú ý. Có thể dử dụng phép biến đổi số ở dạng sau: Cho hàm số f(x) liên tục trên đoạn [a;b]. Giả sử hàm số u=u(x) có đạo hàm liên tục trên đoạn [a;b] sao cho α ≤ u(x) ≤ β, ∀ x∈ [a;b]. Nếu f(x) =g[u(x)].u’(x) ∀ x∈ [a;b], trong đó g(u) liên tục trên đoạn [α;β] thì: \(\int_a^b f (x)dx = \int_{u(a)}^{u(b)} g (u)du\) b. Phương pháp tính tích phân từng phần Định lí. Nếu u =u(x) và v=v(x) là hai hàm số có đạo hàm liên tục trên đoạn [a;b], thì : \(\int_a^b u (x)v'(x)dx = [u(x)v(x)]|_a^b - \int_a^b {u'} (x)v(x)dx\) hay \(\int_a^b u dv = uv|_a^b - \int_a^b v du\) 3. Bất đẳng thức (phần kiến thức bổ sung). Nếu f(x) liên tục và không âm trên đoạn [a;b] thì : \(\int_a^b f (x)dx \ge 0\) Từ đó ta có: Nếu g(x), f(x) liên tục trên đoạn [a;b] và 0 ≤ g(x) ≤ f(x), ∀ x ∈ [a;b] thì \(\int_a^b g (x)dx \le \int_a^b f (x)dx\) Dấu " = " xảy ra khi và chỉ khi g(x) ≡ f(x). Suy ra: Nếu f(x) liên tục trên đoạn [a;b] và m ≤ f(x) ≤ M, ∀ x ∈ [a;b] thì \(m(b - a) \le \int_a^b f (x)dx \le M(b - a)\) Loigiaihay.com
|