Quan hệ giữa các giá trị lượng giác của hai góc đặc biệt

Quan hệ giữa các giá trị lượng giác của hai góc đặc biệt (bù nhau, phụ nhau, đối nhau, hơn kém (pi ), hơn kém (frac{pi }{2}), …)

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

1. Lý thuyết

+ Hai góc đối nhau \(\alpha \)\( - \alpha \)

\(\sin ( - \alpha ) =  - \sin \alpha \);

\(\tan ( - \alpha ) =  - \tan \alpha \)

\(\cos ( - \alpha ) = \cos \alpha \);

\(\cot ( - \alpha ) =  - \cot \alpha \)

+ Hai góc phụ nhau \(\alpha \)\({90^ \circ } - \alpha \)

\(\sin \left( {{{90}^ \circ } - \alpha } \right) = \cos \alpha \);

\(\tan \left( {{{90}^ \circ } - \alpha } \right) = \cot \alpha \)

\(\cos \left( {{{90}^ \circ } - \alpha } \right) = \sin \alpha \);

\(\cot \left( {{{90}^ \circ } - \alpha } \right) = \tan \alpha \)

+ Hai góc bù nhau \(\alpha \)\({180^ \circ } - \alpha \)

\(\sin \left( {{{180}^ \circ } - \alpha } \right) = \sin \alpha \);

\(\tan \left( {{{180}^ \circ } - \alpha } \right) =  - \tan \alpha \)

\(\cos \left( {{{180}^ \circ } - \alpha } \right) =  - \cos \alpha \);

\(\cot \left( {{{180}^ \circ } - \alpha } \right) =  - \cot \alpha \)

+ Hai góc \(\alpha \)\({90^ \circ } + \alpha \)

\(\sin \left( {{{90}^ \circ } + \alpha } \right) = \cos \alpha \);

\(\tan \left( {{{90}^ \circ } + \alpha } \right) =  - \cot \alpha \)

\(\cos \left( {{{90}^ \circ } + \alpha } \right) =  - \sin \alpha \);

\(\cot \left( {{{90}^ \circ } + \alpha } \right) =  - \tan \alpha \)

+ Hai góc \(\alpha \)\({180^ \circ } + \alpha \)

\(\sin \left( {{{180}^ \circ } + \alpha } \right) =  - \sin \alpha \);

\(\tan \left( {{{180}^ \circ } + \alpha } \right) = \tan \alpha \)

\(\cos \left( {{{180}^ \circ } + \alpha } \right) =  - \cos \alpha \);

\(\cot \left( {{{180}^ \circ } + \alpha } \right) = \cot \alpha \)

Chú ý: Với \(k \in \mathbb{Z}\), ta có:

\(\sin \left( {2k{{.180}^ \circ } + \alpha } \right) = \sin \alpha \);

\(\tan \left( {k{{.180}^ \circ } + \alpha } \right) = \tan \alpha \)

\(\cos \left( {2k{{.180}^ \circ } + \alpha } \right) = \cos \alpha \);

\(\cot \left( {k{{.180}^ \circ } + \alpha } \right) = \cot \alpha \)

 

2. Ví dụ minh họa

Ví dụ 1. Cho tam giác ABC, khi đó ta có

\(\sin A = \sin ({180^ \circ } - A) = \sin (B + C)\)

\(\sin \frac{A}{2} = \cos \left( {{{90}^ \circ } - \frac{A}{2}} \right) = \cos \left( {\frac{{B + C}}{2}} \right)\)

Ví dụ 2. Tính các giá trị lượng giác \(\sin {570^ \circ },\cos ( - {1035^ \circ }),\tan ({1500^ \circ }).\)

\(\begin{array}{l}\sin {570^ \circ } = \sin ({360^ \circ } + {180^ \circ } + {30^ \circ }) = \sin ({180^ \circ } + {30^ \circ }) =  - \sin {30^ \circ } =  - \frac{1}{2}\\\cos ( - {1035^ \circ }) = \cos ( - {3.2.180^ \circ } + {45^ \circ }) = \cos ({45^ \circ }) = \frac{{\sqrt 2 }}{2}\\\tan ({1500^ \circ }) = \tan ({8.180^ \circ } + {60^ \circ }) = \tan ({60^ \circ }) = \sqrt 3 .\end{array}\)

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close