Bài 2 trang 65 SGK Toán 11 tập 1 - Cánh DiềuTính các giới hạn sau: a) (lim frac{{5n + 1}}{{2n}};) b) (lim frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}};) c) (lim frac{{sqrt {{n^2} + 5n + 3} }}{{6n + 2}};) d) (lim left( {2 - frac{1}{{{3^n}}}} right);) e) (lim frac{{{3^n} + {2^n}}}{{{{4.3}^n}}};) g) (lim frac{{2 + frac{1}{n}}}{{{3^n}}}.) GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Tính các giới hạn sau: a) \(\lim \frac{{5n + 1}}{{2n}};\) b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}};\) c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}};\) d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right);\) e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}};\) g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}.\) Phương pháp giải - Xem chi tiết Sử dụng định lí về giới hạn hữu hạn kết hợp với một số giới hạn cơ bản. Định nghĩa dãy số có giới hạn hữu hạn. Dãy số \(\left( {{u_n}} \right)\) có giới hạn là số thực a khi n dần tới dương vô cực, nếu \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} - a} \right) = 0\), kí hiệu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = a\) hay \({u_n} \to a\) khi \(n \to + \infty \) hay \(\lim {u_n} = a\). Lời giải chi tiết a) \(\lim \frac{{5n + 1}}{{2n}} = \lim \frac{{5 + \frac{1}{n}}}{2} = \frac{{5 + 0}}{2} = \frac{5}{2}\) b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}} = \lim \frac{{6 + \frac{8}{n} + \frac{1}{{{n^2}}}}}{{5 + \frac{3}{{{n^2}}}}} = \frac{{6 + 0 + 0}}{{5 + 0}} = \frac{6}{5}\) c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}} = \lim \frac{{\sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{6 + \frac{2}{n}}} = \frac{{\sqrt {1 + 0 + 0} }}{{6 + 0}} = \frac{1}{6}\) d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right) = \lim 2 - \lim {\left( {\frac{1}{3}} \right)^n} = 2 - 0 = 2\) e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}} = \lim \frac{{1 + {{\left( {\frac{2}{3}} \right)}^n}}}{4} = \frac{{1 + 0}}{4} = \frac{1}{4}\) g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}\) Ta có \(\lim \left( {2 + \frac{1}{n}} \right) = \lim 2 + \lim \frac{1}{n} = 2 + 0 = 2 > 0;\lim {3^n} = + \infty \Rightarrow \lim \frac{{2 + \frac{1}{n}}}{{{3^n}}} = 0\)
|