Quảng cáo
  • Giải mục 1 trang 59, 60, 61, 62

    Hình 2 biểu diễn các số hạng của dãy số (left( {{u_n}} right),) với ({u_n} = frac{1}{n}) trên hệ trục tọa độ.

    Xem lời giải
  • Bài 3 trang 79

    Tính các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to - 3} \left( {4{x^2} - 5x + 6} \right)\); b) \(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}}\); c) \(\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{{x^2} - 16}}\).

    Xem lời giải
  • Quảng cáo
  • Giải mục 2 trang 75, 76

    Quan sát đồ thị các hàm số: (y = {x^2} - 4x + 3) (Hình 14a); (y = frac{{x + 1}}{{x - 1}},,left( {x ne 1} right)) (Hình 14b); (y = tan x) (Hình 14c) và nêu nhận xét về tính liên tục của mỗi hàm số đó trên từng khoảng của tập xác định.

    Xem lời giải
  • Giải mục 2 trang 69, 70

    Cho hai hàm số (fleft( x right) = {x^2} - 1,gleft( x right) = x + 1.) a) Tính (mathop {lim }limits_{x to 1} fleft( x right)) và (mathop {lim }limits_{x to 1} gleft( x right).) b) Tính (mathop {lim }limits_{x to 1} left[ {fleft( x right) + gleft( x right)} right])và so sánh (mathop {lim }limits_{x to 1} fleft( x right) + mathop {lim }limits_{x to 1} gleft( x right).) c) Tính (mathop {lim }limits_{x to 1} left[ {fleft( x right) - gleft( x

    Xem lời giải
  • Giải mục 2 trang 62

    Cho hai dãy số (left( {{u_n}} right),left( {{v_n}} right)) với ({u_n} = 8 + frac{1}{n};{v_n} = 4 - frac{2}{n}.) a) Tính (lim {u_n},lim {v_n}.) b) Tính (lim left( {{u_n} + {v_n}} right)) và so sánh giá trị đó với tổng (lim {u_n} + lim {v_n}.) c) Tính (lim left( {{u_n}.{v_n}} right)) và so sánh giá trị đó với tổng (left( {lim {u_n}} right).left( {lim {v_n}} right).)

    Xem lời giải
  • Bài 4 trang 79

    Tính các giới hạn sau: a) (mathop {lim }limits_{x to - infty } frac{{6x + 8}}{{5x - 2}}); b) (mathop {lim }limits_{x to + infty } frac{{6x + 8}}{{5x - 2}});

    Xem lời giải
  • Bài 1 trang 77

    Dùng định nghĩa xét tính liên tục của hàm số (fleft( x right) = 2{x^3} + x + 1) tại điểm (x = 2.)

    Xem lời giải
  • Giải mục 3 trang 70, 71

    Cho hàm số (fleft( x right) = frac{1}{{x - 1}},,left( {x ne 1} right)) có đồ thị như ở Hình 8. Quan sát đồ thị đó và cho biết: a) Khi biến x dần tới 1 về bên phải thì (fleft( x right)) dần tới đâu. b) Khi biến x dần tới 1 về bên trái thì (fleft( x right)) dần tới đâu

    Xem lời giải
  • Giải mục 3 trang 63

    Cho cấp số nhân (left( {{u_n}} right),) với ({u_1} = 1) và công bội (q = frac{1}{2}.) a) So sánh (left| q right|) với 1. b) Tính ({S_n} = {u_1} + {u_2} + ... + {u_n}.) Từ đó, hãy tính (lim {S_n}.)

    Xem lời giải
  • Bài 5 trang 79

    Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{2x + a}&{{\rm{ }}x < 2}\\4&{{\rm{ }}x = 2}\\{ - 3x + b}&{{\rm{ }}\,x > 2}\end{array}} \right.\)

    Xem lời giải
  • Quảng cáo