Giải bài 27 trang 70 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Xét xem các dãy số với công thức tổng quát sau có phải là cấp số cộng/cấp số nhân hay không. Tìm số hạng đầu tiên và công sai/công bội nếu có.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Xét xem các dãy số với công thức tổng quát sau có phải là cấp số cộng/cấp số nhân hay không. Tìm số hạng đầu tiên và công sai/công bội nếu có.

a) \({u_n} = 5n - 7\);

b) \({u_n} = 9 \cdot {2^n}\);

c) \({u_n} = {n^2} - n + 1\).

Phương pháp giải - Xem chi tiết

Nếu \({u_{n + 1}} - {u_n} = \)hằng số với \(\forall n \in \mathbb{N}*\) thì dãy số \(\left( {{u_n}} \right)\)là cấp số cộng

Nếu \({u_{n + 1}} = {u_n}.q\) với \(q\) là hằng số với \(\forall n \in \mathbb{N}*\) thì dãy số \(\left( {{u_n}} \right)\)là cấp số nhân

Lời giải chi tiết

a) Ta có \({u_{n + 1}} = 5\left( {n + 1} \right) - 7 = 5n - 2\), suy ra

\({u_{n + 1}} - {u_n} = 5n - 2 - \left( {5n - 7} \right) = 5\forall n.\)

Vậy \(\left( {{u_n}} \right)\) là cấp số cộng và \({u_1} =  - 2,d = 5\).

Lại có \(\frac{{{u_2}}}{{{u_1}}} = \frac{3}{{ - 2}} \ne \frac{{{u_3}}}{{{u_2}}} = \frac{8}{3}\) nên \(\left( {{u_n}} \right)\) không là cấp số nhân.

b) Ta có \({u_{n + 1}} = 9 \cdot {2^{n + 1}} = 18 \cdot {2^n}\), suy ra \({u_{n + 1}}:{u_n} = 2\forall n\).

Vậy \(\left( {{u_n}} \right)\) là cấp số nhân và \({u_1} = 18,q = 2\).

Lại có \({u_2} - {u_1} = 36 - 18 \ne {u_3} - {u_2} = 72 - 36\) nên \(\left( {{u_n}} \right)\) không là cấp số cộng.

c) Ta có \(\frac{{{u_2}}}{{{u_1}}} = \frac{3}{1} \ne \frac{{{u_3}}}{{{u_2}}} = \frac{7}{3}\) nên \(\left( {{u_n}} \right)\) không là cấp số nhân.

Lại có \({u_2} - {u_1} = 3 - 1 \ne {u_3} - {u_2} = 7 - 3\) nên \(\left( {{u_n}} \right)\) không là cấp số cộng.

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close