Giải bài 41 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho hình lăng trụ tam giác \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác đều cạnh bằng \({\rm{a}}\),

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Cho hình lăng trụ tam giác \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác đều cạnh bằng \({\rm{a}}\), tam giác \(AB'C'\) cân tại \(A\), mặt phẳng \(\left( {AB'C'} \right)\) vuông góc với mặt phẳng \(\left( {A'B'C'} \right)\) và \(AA' = a\sqrt 3 \).

a) Chứng minh rằng \(BCC'B'\) là hình chữ nhật.

b) Tính theo a thể tích khối lăng trụ \(ABC \cdot A'B'C'\).

c) Tính góc giữa đường thẳng \(AA'\) và mặt phẳng \(\left( {A'B'C'} \right)\).

Phương pháp giải - Xem chi tiết

a) Kẻ \(AH\) vuông góc với \(B'C'\) tại \(H\).Chứng minh \(AH \bot \left( {A'B'C'} \right) \Rightarrow B'C' \bot AH\)

 Chứng minh \(B'C' \bot \left( {AA'H} \right) \Rightarrow B'C' \bot AA'\).

Kết hợp với  \(BB'//AA'\) nên \(B'C' \bot BB'\) hay \(BCC'B'\) là hình chữ nhật.

b) Tính chiều cao \(AH = \sqrt {A{A^{{\rm{'}}2}} - A'{H^2}} \).

Tính thể tích khối lăng trụ \(ABC \cdot A'B'C'\) bằng \({S_{A'B'C'}} \cdot AH\).

c) Chứng minh góc giữa \(AA'\) và mặt phẳng \(\left( {A'B'C'} \right)\) là góc giữa hai đường thẳng \(AA'\) và \(A'H\), mà \(\left( {AA',A'H} \right) = \widehat {AA'H}\).

Xét tam giác \(AA'H\) vuông tại \(H\), ta có: \({\rm{cos}}\widehat {AA'H} = \frac{{A'H}}{{AA'}} \Rightarrow \widehat {AA'H}\).

Kết luận  góc giữa đường thẳng \(AA'\) và mặt phẳng \(\left( {A'B'C'} \right)\)

Lời giải chi tiết

a) Kẻ \(AH\) vuông góc với \(B'C'\) tại \(H\) thì \(AH \bot \left( {A'B'C'} \right)\) và \(H\) là trung điểm của \(B'C'\), tam giác \(A'B'C'\) đều nên \(A'H \bot B'C'\) \( \Rightarrow B'C' \bot \left( {AA'H} \right) \Rightarrow B'C' \bot AA'\).

Mà \(BB'//AA'\) nên \(B'C' \bot BB'\) hay \(BCC'B'\) là hình chữ nhật.

b) Tam giác \(AA'H\) vuông tại \(H\), ta có:\(A'H = \frac{{a\sqrt 3 }}{2} \Rightarrow AH = \sqrt {A{A^{{\rm{'}}2}} - A'{H^2}}  = \frac{{3a}}{2}\).

Thể tích khối lăng trụ \(ABC \cdot A'B'C'\) bằng \({S_{A'B'C'}} \cdot AH = \frac{{3{a^3}\sqrt 3 }}{8}\).

c) Vì \(A'H\) là hình chiếu vuông góc của \(AA'\) trên mặt phẳng \(\left( {A'B'C'} \right)\) nên góc giữa đường thẳng \(AA'\) và mặt phẳng \(\left( {A'B'C'} \right)\) là góc giữa hai đường thẳng \(AA'\) và \(A'H\), mà \(\left( {AA',A'H} \right) = \widehat {AA'H}\).

Tam giác \(AA'H\) vuông tại \(H\), ta có: \({\rm{cos}}\widehat {AA'H} = \frac{{A'H}}{{AA'}} = \frac{1}{2} \Rightarrow \widehat {AA'H} = {60^ \circ }\).

Vậy góc giữa đường thẳng \(AA'\) và mặt phẳng \(\left( {A'B'C'} \right)\) bằng \({60^ \circ }\).

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close