Giải bài 5 trang 67 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho cấp số nhân có số hạng thứ năm bằng \(48\) và số hạng thứ mười hai bằng\( - 6144\). Số hạng thứ mười của cấp số nhân này bằng

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Cho cấp số nhân có số hạng thứ năm bằng \(48\) và số hạng thứ mười hai bằng\( - 6144\). Số hạng thứ mười của cấp số nhân này bằng

A.\(1536\).

B.\( - 1536\).

C.\(3072\).

D.\( - 3072\).

Phương pháp giải - Xem chi tiết

Áp dụng số hạng tổng quát của cấp số nhân \({u_n} = {u_1}{q^{n - 1}}\) có

 \(\left\{ \begin{array}{l}{u_5} = {u_1}{q^4} = 48\\{u_{12}} = {u_1}{q^{11}} =  - 6144\end{array} \right. \Rightarrow \frac{{{u_{12}}}}{{{u_5}}} = \frac{{{u_1}{q^{11}}}}{{{u_1}{q^4}}} = {q^7} = \frac{{ - 6144}}{{48}} =  - 128 \Rightarrow q =  - 2\)

Từ đó tìm \({u_1} \Rightarrow {u_{10}}\)

Lời giải chi tiết

Cho cấp số nhân có số hạng thứ năm bằng \(48\) và số hạng thứ mười hai bằng\( - 6144\).

\(\left\{ \begin{array}{l}{u_5} = {u_1}{q^4} = 48\\{u_{12}} = {u_1}{q^{11}} =  - 6144\end{array} \right. \Rightarrow \frac{{{u_{12}}}}{{{u_5}}} = \frac{{{u_1}{q^{11}}}}{{{u_1}{q^4}}} = {q^7} = \frac{{ - 6144}}{{48}} =  - 128 \Rightarrow q =  - 2\)

\({u_1}{q^4} = 48 \Rightarrow {u_1} = \frac{{48}}{{{q^4}}} = 3\)

Vậy số hạng thứ mười của cấp số nhân này bằng \({u_{10}} = {u_1}{q^9} = 3.{\left( { - 2} \right)^9} =  - 1536\)

Chọn B

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close