Giải bài 9.41 trang 65 sách bài tập toán 11 - Kết nối tri thức với cuộc sốngVị trí của một vật chuyển động (tính bằng mét) sau giây được xác định bởi \(s = {t^4} - 4{t^3} - 20{t^2} + 20t,t > 0\). GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Vị trí của một vật chuyển động (tính bằng mét) sau giây được xác định bởi \(s = {t^4} - 4{t^3} - 20{t^2} + 20t,t > 0\). Gia tốc của vật tại thời điểm mà vận tốc \(v = 20{\rm{\;m}}/{\rm{s}}\) là A. \(140\,{\rm{m/}}{{\rm{s}}^2}\). B. \(120\,{\rm{m/}}{{\rm{s}}^2}\). C. \(130\,{\rm{m/}}{{\rm{s}}^2}\). D. \(100\,{\rm{m/}}{{\rm{s}}^2}\). Phương pháp giải - Xem chi tiết \(v(t) = s'(t)\) \(a(t) = s''(t)\) Lời giải chi tiết \(\begin{array}{l}v(t) = s'(t) = 4{t^3} - 12{t^2} - 40t + 20\\a(t) = s''(t) = 12{t^2} - 24t - 40\end{array}\)\(v = 20{\rm{\;m}}/{\rm{s}} \Rightarrow v(t) = s'(t) = 4{t^3} - 12{t^2} - 40t + 20 = 20 \Leftrightarrow 4{t^3} - 12{t^2} - 40t = 0 \Leftrightarrow t = 5\)\(a(5) = s''(t) = {12.5^2} - 24.5 - 40 = 140\)
|