Giải bài tập 2 trang 70 SGK Toán 9 tập 1 - Cánh diềuÁp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức: a. (sqrt {25left( {a + 1} right)_{}^2} ) với (a > - 1); b. (sqrt {x_{}^2left( {x - 5} right)_{}^2} ) với (x > 5); c. (sqrt {2b} .sqrt {32b} ) với (b > 0); d. (sqrt {3c} .sqrt {27c_{}^3} ) với (c > 0). GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Áp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức: a. \(\sqrt {25\left( {a + 1} \right)_{}^2} \) với \(a > - 1\); b. \(\sqrt {x_{}^2\left( {x - 5} \right)_{}^2} \) với \(x > 5\); c. \(\sqrt {2b} .\sqrt {32b} \) với \(b > 0\); d. \(\sqrt {3c} .\sqrt {27c_{}^3} \) với \(c > 0\). Video hướng dẫn giải Phương pháp giải - Xem chi tiết Áp dụng kiến thức “Với các biểu thức A, B không âm, ta có: \(\sqrt {A.B} = \sqrt A .\sqrt B \)” để giải bài toán. Lời giải chi tiết a. \(\sqrt {25\left( {a + 1} \right)_{}^2} = \sqrt {25} .\sqrt {\left( {a + 1} \right)_{}^2} = 5.\left| {a + 1} \right| = 5\left( {a + 1} \right)\) (Vì \(a > - 1\) nên \(a + 1 > 0\)). b. \(\sqrt {x_{}^2\left( {x - 5} \right)_{}^2} = \sqrt {x_{}^2} .\sqrt {\left( {x - 5} \right)_{}^2} = \left| x \right|.\left| {x - 5} \right| = x\left( {x - 5} \right)\) (Vì \(x > 5\) nên \(x - 5 > 0\)). c. \(\sqrt {2b} .\sqrt {32b} = \sqrt {2b.32b} = \sqrt {64b_{}^2} = \sqrt {64} .\sqrt {b_{}^2} = 8\left| b \right| = 8b\) (Do \(b > 0\)). d. \(\sqrt {3c} .\sqrt {27c_{}^3} = \sqrt {3c.27c_{}^3} = \sqrt {81c_{}^4} = \sqrt {81} .\sqrt {c_{}^4} = 9.\left| {c_{}^2} \right| = 9c_{}^2\).
|