Giải mục 4 trang 69, 70 SGK Toán 9 tập 1 - Cánh diều

Xét phép biến đổi: (frac{5}{{sqrt 3 }} = frac{{5sqrt 3 }}{{left( {sqrt 3 } right)_{}^2}} = frac{{5sqrt 3 }}{3}). Hãy xác định mẫu thức của mỗi biểu thức sau: (frac{5}{{sqrt 3 }};frac{{5sqrt 3 }}{3}).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ4

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 4 trang 69 SGK Toán 9 Cánh diều

Xét phép biến đổi: \(\frac{5}{{\sqrt 3 }} = \frac{{5\sqrt 3 }}{{\left( {\sqrt 3 } \right)_{}^2}} = \frac{{5\sqrt 3 }}{3}\). Hãy xác định mẫu thức của mỗi biểu thức sau: \(\frac{5}{{\sqrt 3 }};\frac{{5\sqrt 3 }}{3}\).

Phương pháp giải:

Dựa vào kiến thức về phân số để xác định mẫu thức của mỗi biểu thức.

Lời giải chi tiết:

+ Mẫu thức của phân số \(\frac{5}{{\sqrt 3 }}\) là \(\sqrt 3 \).

+ Mẫu thức của phân số \(\frac{{5\sqrt 3 }}{3}\) là 3.

LT4

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 4 trang 69 SGK Toán 9 Cánh diều

Trục căn thức ở mẫu: \(\frac{{x_{}^2 - 1}}{{\sqrt {x - 1} }}\) với \(x > 1\).

Phương pháp giải:

+ Tìm biểu thức có thể làm mất căn thức ở dưới mẫu;

+ Nhân cả tử và mẫu với biểu thức vừa tìm được để trục căn thức ở mẫu.

Lời giải chi tiết:

Ta có: \(\frac{{{x^2} - 1}}{{\sqrt {x - 1} }}\)\( = \frac{{\left( {{x^2} - 1} \right).\sqrt {x - 1} }}{{\sqrt {x - 1} .\sqrt {x - 1} }}\)\( = \frac{{\left( {x - 1} \right)\left( {x + 1} \right)\sqrt {x - 1} }}{{x - 1}}\)\( = \left( {x + 1} \right)\sqrt {x - 1} \).

LT5

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 5 trang 69 SGK Toán 9 Cánh diều

Trục căn thức ở mẫu: \(\frac{{x - 1}}{{\sqrt x  - 1}}\) với \(x > 1\).

Phương pháp giải:

+ Tìm biểu thức có thể làm mất căn thức ở dưới mẫu;

+ Nhân cả tử và mẫu với biểu thức vừa tìm được để trục căn thức ở mẫu.

Lời giải chi tiết:

Ta có: \(\frac{{x - 1}}{{\sqrt x  - 1}}\)\( = \frac{{\left( {x - 1} \right)\left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\)\( = \frac{{\left( {x - 1} \right)\left( {\sqrt x  + 1} \right)}}{{x - 1}}\)\( = \sqrt x  + 1\).

LT6

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 6 trang 70 SGK Toán 9 Cánh diều

Trục căn thức ở mẫu: \(\frac{1}{{\sqrt {x + 1}  - \sqrt x }}\) với \(x \ge 0\).

Phương pháp giải:

+ Tìm biểu thức có thể làm mất căn thức ở dưới mẫu;

+ Nhân cả tử và mẫu với biểu thức vừa tìm được để trục căn thức ở mẫu.

Lời giải chi tiết:

Ta có: \(\frac{1}{{\sqrt {x + 1}  - \sqrt x }}\)\( = \frac{{\sqrt {x + 1}  + \sqrt x }}{{\left( {\sqrt {x + 1}  - \sqrt x } \right)\left( {\sqrt {x + 1}  + \sqrt x } \right)}}\)\( = \frac{{\sqrt {x + 1}  + \sqrt x }}{{x + 1 - x}}\)\( = \sqrt {x + 1}  + \sqrt x \).

  • Giải bài tập 1 trang 70 SGK Toán 9 tập 1 - Cánh diều

    Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức: a. (sqrt {left( {5 - x} right)_{}^2} ) với (x ge 5); b. (sqrt {left( {x - 3} right)_{}^4} ); c. (sqrt {left( {y + 1} right)_{}^6} ) với (y < - 1).

  • Giải bài tập 2 trang 70 SGK Toán 9 tập 1 - Cánh diều

    Áp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức: a. (sqrt {25left( {a + 1} right)_{}^2} ) với (a > - 1); b. (sqrt {x_{}^2left( {x - 5} right)_{}^2} ) với (x > 5); c. (sqrt {2b} .sqrt {32b} ) với (b > 0); d. (sqrt {3c} .sqrt {27c_{}^3} ) với (c > 0).

  • Giải bài tập 3 trang 71 SGK Toán 9 tập 1 - Cánh diều

    Áp dụng quy tắc về căn thức bậc hai của một thương, hãy rút gọn biểu thức: a. (sqrt {frac{{left( {3 - a} right)_{}^2}}{9}} ) với (a > 3); b. (frac{{sqrt {75x_{}^5} }}{{sqrt {5x_{}^3} }}) với (x > 0); c. (sqrt {frac{9}{{x_{}^2 - 2x + 1}}} ) với (x > 1); d. (sqrt {frac{{x_{}^2 - 4x + 4}}{{x_{}^2 + 6x + 9}}} ) với (x ge 2).

  • Giải bài tập 4 trang 71 SGK Toán 9 tập 1 - Cánh diều

    Trục căn thức ở mẫu: a. (frac{9}{{2sqrt 3 }}); b. (frac{2}{{sqrt a }}) với (a > 0); c. (frac{7}{{3 - sqrt 2 }}); d. (frac{5}{{sqrt x + 3}}) với (x > 0;x ne 9); e. (frac{{sqrt 3 - sqrt 2 }}{{sqrt 3 + sqrt 2 }}); g. (frac{1}{{sqrt x - sqrt 3 }}) với (x > 0,x ne 3).

  • Giải bài tập 5 trang 71 SGK Toán 9 tập 1 - Cánh diều

    Rút gọn biểu thức: (frac{{sqrt a }}{{sqrt a - sqrt b }} - frac{{sqrt b }}{{sqrt a + sqrt b }} - frac{{2b}}{{a - b}}) với (a ge 0,b ge 0,a ne b).

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

close