Cho đa thức \({x^2} - 6x + 2xy - 12y.\)
Áp dụng các phương pháp tìm nhân tử chung vừa học để xác định đa thức trên có nhân tử chung không.
Phân tích đa thức thành nhân tử bằng phương pháp tìm nhân tử chung.
1) Các hạng tử của đa thức trên không có nhân tử chung
2) \(\begin{array}{l}{x^2} - 6x + 2xy - 12y = \left( {{x^2} - 6x} \right) + \left( {2xy - 12y} \right)\\ = x\left( {x - 6} \right) + 2y\left( {x - 6} \right)\\ = \left( {x + 2y} \right).\left( {x - 6} \right)\end{array}\)
Các bài tập cùng chuyên đề
Bài 1 :
Phân tích đa thức \(3{x^3} - 8{x^2} - 41x + 30\) thành nhân tử
Bài 2 :
Phân tích đa thức \(2{x^2} - 4xy + 2y - x\) thành nhân tử.
Bài 3 :
Tính nhanh giá trị của biểu thức
\(A = {x^2} + 2y - 2x - xy\) tại \(x = 2022,y = 2020\)
Bài 4 :
Đa thức \({x^2} - 9x + 8\) được phân tích thành tích của hai đa thức
A. \(x - 1\) và \(x + 8\)
B. \(x - 1\) và \(x - 8\)
C. \(x - 2\) và \(x - 4\)
D. \(x - 2\) và \(x + 4\)
Bài 5 :
Phân tích các đa thức sau thành nhân tử:
a) \(8{x^3} - 1\)
b) \({x^3} + 27{y^3}\)
c) \({x^3} - {y^6}\)
Bài 6 :
Phân tích các đa thức sau thành nhân tử:
a) \({x^2} - xy + x - y\)
b) \({x^2} + 2xy - 4x - 8y\)
c) \({x^3} - {x^2} - x + 1\)
Bài 7 :
Cho đa thức: \({x^2} - 2{\rm{x}}y + {y^2} + x - y\)
a) Nhóm ba số hạng đầu và sử dụng hằng đẳng thức để viết nhóm đó thành tích
b) Phân tích đa thức trên thành nhân tử
Bài 8 :
Phân tích mỗi đa thức sau thành nhân tử:
\(a){x^2} - 25 - 4{\rm{x}}y + 4{y^2}\) \(b){x^3} - {y^3} + {x^2}y - x{y^2}\) \(c){x^4} - {y^4} + {x^3}y - x{y^3}\)
Bài 9 :
Tính giá trị của mỗi biểu thức sau:
a) \(A = {x^4} - 2{{\rm{x}}^2}y - {x^2} + {y^2} + y\) biết \({x^2} - y = 6\)
b) \(B = {x^2}{y^2} + 2{\rm{x}}yz + {z^2}\) biết xy + z = 0.
Bài 10 :
Phân tích đa thức sau thành nhân tử: \(2{x^2}y + {x^2}z - 2{y^2} - yz\).
Bài 11 :
Tính nhanh: \(91.122,5 - 91.17,5 + 122,5.9 - 17,5.9\).
Bài 12 :
Phân tích đa thức sau thành nhân tử: \({x^2} + {x^3} - {y^2} - {y^3}\)
Bài 13 :
Phân tích các đa thức sau thành nhân tử:
a) \(x + 2x\left( {x - y} \right) - y\);
b) \({x^2} + xy - 3x - 3y\);
c) \(xy - 5y + 4x - 20\);
d) \(5xy - 25{x^2} + 50x - 10y\).
Bài 14 :
Tính giá trị của biểu thức:
a) \(P = 7\left( {a - 4} \right) - b\left( {4 - a} \right)\) tại \(a = 17\) và \(b = 3\);
b) \(Q = {a^2} + 2ab - 5a - 10b\) tại \(a = 1,2\) và \(b = 4,4\).
Bài 15 :
Phân tích các đa thức sau thành nhân tử:
a) \(4{a^2} - 4{b^2} - a - b\);
b) \(9{a^2} - 4{b^2} + 4b - 1\);
c) \(4{x^3} - {y^3} + 4{x^2}y - x{y^2}\);
d) \({a^3} - {b^3} + 4ab + 4{a^2} + 4{b^2}\).
Bài 16 :
Tìm số tự nhiên \(n\) để \({n^3} - {n^2} + n - 1\) là số nguyên tố.
Bài 17 :
Phân tích đa thức \(5x - 5y + ax - ay\) thành nhân tử, ta nhận được
A. \(\left( {5 + a} \right)\left( {x - y} \right)\)
B. \(\left( {5 - a} \right)\left( {x + y} \right)\)
C. \(\left( {5 + a} \right)\left( {x + y} \right)\)
D. \(5\left( {x - y + a} \right)\)
Bài 18 :
Đa thức \({x^2} - 3xy + 2{y^2}\) được phân tích thành tích của hai đa thức:
A. x + 2y và x – y.
B. x – 2y và x + y.
C. x + 2y và x + y.
D. x – 2y và x – y.
Bài 19 :
Đa thức \({x^2} + 5x + 6\) được phân tích thành tích của hai đa thức:
A. x + 2 và x – 3.
B. x – 2 và x – 3.
C. x + 2 và x + 3.
D. x – 2 và x + 3.
Bài 20 :
Đa thức \({x^2} - 9x + 8\) được phân tích thành tích của hai đa thức
A. x – 1 và x + 8.
B. x – 1 và x – 8.
C. x – 2 và x – 4.
D. x – 2 và x + 4.
Bài 21 :
Phân tích các đa thức sau thành nhân tử:
a) \(2{x^2}\;-3x + 1\).
b) \(3{x^2}\; + 4x + 1\).
Bài 22 :
Phân tích đa thức \( 5{x^2} - 4x + 10xy - 8y\) thành nhân tử ta được
\(\left( {x + 2y} \right)\left( {5x - 4} \right)\)
\(\left( {5x + 4} \right)\left( {x - 2y} \right)\)
\(\left( {5x - 4} \right)\left( {x - 2y} \right)\)
\(\left( {5x - 2y} \right)\left( {x + 4y} \right)\)
Bài 23 :
Cho đa thức: \(f(x) = {x^2} - 15{\rm{x}} + 56\)
a) Phân tích đa thức thành nhân tử.
b) Tìm x sao cho f(x) = 0
Bài 24 :
Cho đa thức: \(f(x) = {x^2} - 15{\rm{x}} + 56\)
a) Phân tích đa thức thành nhân tử.
b) Tìm x sao cho f(x) = 0
Bài 25 :
Phân tích các đa thức sau thành nhân tử:
a) 2x2 – 3x + 1.
b) 3x2 + 4x + 1.
Bài 26 :
Phân tích đa thức thành nhân tử: x6 + x3 – x2 – 1