Giải mục 2 trang 68 SGK Toán 9 tập 1 - Cánh diều

So sánh: a. (sqrt {16.0,25} ) và (sqrt {16} .sqrt {0,25} ); b. (sqrt {a.b} ) và (sqrt a .sqrt b ) với a, b là hai số không âm.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ2

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 2 trang 68 SGK Toán 9 Cánh diều

So sánh:

a. \(\sqrt {16.0,25} \) và \(\sqrt {16} .\sqrt {0,25} \);

b. \(\sqrt {a.b} \) và \(\sqrt a .\sqrt b \) với a, b là hai số không âm.

Phương pháp giải:

Dựa vào kiến thức căn bậc hai của một tích để so sánh.

Lời giải chi tiết:

a. \(\sqrt {16.0,25}  = \sqrt {16} .\sqrt {0,25} \).

b. \(\sqrt {a.b}  = \sqrt a .\sqrt b \).

LT2

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 2 trang 68 SGK Toán 9 Cánh diều

Áp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức:

a. \(\sqrt {9x_{}^4} \);

b. \(\sqrt {3a_{}^3} .\sqrt {27a} \) với \(a > 0\).

Phương pháp giải:

Dựa vào kiến thức “Với các biểu thức A, B không âm, ta có: \(\sqrt {A.B}  = \sqrt A .\sqrt B \).

Lời giải chi tiết:

a. \(\sqrt {9x_{}^4}  = \sqrt 9 .\sqrt {x_{}^4}  = 3.\left| {x_{}^2} \right| = 3x_{}^2\).

b. \(\sqrt {3a_{}^3} .\sqrt {27a}  = \sqrt {3a_{}^3.27a}  = \sqrt {81a_{}^4}  = \sqrt {81} .\sqrt {a_{}^4}  = 9.\left| {a_{}^2} \right| = 9a_{}^2\).

  • Giải mục 3 trang 68, 69 SGK Toán 9 tập 1 - Cánh diều

    So sánh: a. (sqrt {frac{{49}}{{169}}} ) và (frac{{sqrt {49} }}{{sqrt {169} }}); b. (sqrt {frac{a}{b}} ) và (frac{{sqrt a }}{{sqrt b }}) với a là số không âm, b là số dương.

  • Giải mục 4 trang 69, 70 SGK Toán 9 tập 1 - Cánh diều

    Xét phép biến đổi: (frac{5}{{sqrt 3 }} = frac{{5sqrt 3 }}{{left( {sqrt 3 } right)_{}^2}} = frac{{5sqrt 3 }}{3}). Hãy xác định mẫu thức của mỗi biểu thức sau: (frac{5}{{sqrt 3 }};frac{{5sqrt 3 }}{3}).

  • Giải bài tập 1 trang 70 SGK Toán 9 tập 1 - Cánh diều

    Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức: a. (sqrt {left( {5 - x} right)_{}^2} ) với (x ge 5); b. (sqrt {left( {x - 3} right)_{}^4} ); c. (sqrt {left( {y + 1} right)_{}^6} ) với (y < - 1).

  • Giải bài tập 2 trang 70 SGK Toán 9 tập 1 - Cánh diều

    Áp dụng quy tắc về căn thức bậc hai của một tích, hãy rút gọn biểu thức: a. (sqrt {25left( {a + 1} right)_{}^2} ) với (a > - 1); b. (sqrt {x_{}^2left( {x - 5} right)_{}^2} ) với (x > 5); c. (sqrt {2b} .sqrt {32b} ) với (b > 0); d. (sqrt {3c} .sqrt {27c_{}^3} ) với (c > 0).

  • Giải bài tập 3 trang 71 SGK Toán 9 tập 1 - Cánh diều

    Áp dụng quy tắc về căn thức bậc hai của một thương, hãy rút gọn biểu thức: a. (sqrt {frac{{left( {3 - a} right)_{}^2}}{9}} ) với (a > 3); b. (frac{{sqrt {75x_{}^5} }}{{sqrt {5x_{}^3} }}) với (x > 0); c. (sqrt {frac{9}{{x_{}^2 - 2x + 1}}} ) với (x > 1); d. (sqrt {frac{{x_{}^2 - 4x + 4}}{{x_{}^2 + 6x + 9}}} ) với (x ge 2).

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

close